CS302 Assignment 2 solution 2019
1.
Write the SOP expression for the given sum
∑ABCDE(2,4,6,8,10,12,14,16,18,20,22,24,26,28)
A
|
B
|
C
|
D
|
E
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
A
|
B
|
C
|
D
|
E
|
Decimal value
|
Output
(f)
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
2
|
1
|
0
|
0
|
0
|
1
|
1
|
3
|
0
|
0
|
0
|
1
|
0
|
0
|
4
|
1
|
0
|
0
|
1
|
0
|
1
|
5
|
0
|
0
|
0
|
1
|
1
|
0
|
6
|
1
|
0
|
0
|
1
|
1
|
1
|
7
|
0
|
0
|
1
|
0
|
0
|
0
|
8
|
1
|
0
|
1
|
0
|
0
|
1
|
9
|
0
|
0
|
1
|
0
|
1
|
0
|
10
|
1
|
0
|
1
|
0
|
1
|
1
|
11
|
0
|
0
|
1
|
1
|
0
|
0
|
12
|
1
|
0
|
1
|
1
|
0
|
1
|
13
|
0
|
0
|
1
|
1
|
1
|
0
|
14
|
1
|
0
|
1
|
1
|
1
|
1
|
15
|
0
|
1
|
0
|
0
|
0
|
0
|
16
|
1
|
1
|
0
|
0
|
0
|
1
|
17
|
0
|
1
|
0
|
0
|
1
|
0
|
18
|
1
|
1
|
0
|
0
|
1
|
1
|
19
|
0
|
1
|
0
|
1
|
0
|
0
|
20
|
1
|
1
|
0
|
1
|
0
|
1
|
21
|
0
|
1
|
0
|
1
|
1
|
0
|
22
|
1
|
1
|
0
|
1
|
1
|
1
|
23
|
0
|
1
|
1
|
0
|
0
|
0
|
24
|
1
|
1
|
1
|
0
|
0
|
1
|
25
|
0
|
1
|
1
|
0
|
1
|
0
|
26
|
1
|
1
|
1
|
0
|
1
|
1
|
27
|
0
|
1
|
1
|
1
|
0
|
0
|
28
|
1
|
1
|
1
|
1
|
0
|
1
|
29
|
0
|
1
|
1
|
1
|
1
|
0
|
30
|
1
|
1
|
1
|
1
|
1
|
1
|
31
|
0
|
Q2
ANS:
Find the prime implicant of minterm using Quine mcculsky
method
∑ABCDE(2,4,6,8,10,12,14,16,18,20,22,24,26,28)
00010
|
2
|
00100
|
4
|
01000
|
8
|
10000
|
16
|
00110
|
6
|
01010
|
10
|
01100
|
12
|
10010
|
18
|
10100
|
20
|
11000
|
24
|
01110
|
14
|
10110
|
22
|
11010
|
26
|
11100
|
28
|
11110
|
30
|
|
|
|
|
|
|
Step 2:
2,6(00-10) 2,10(0-010) 2,18(-0010)
4,12(0-100)4,6(001-0)4,20(-0100)
8,10(010-0)8,24(-1000)
6,14(0-110)6,22(-0110)
10,14(01-10)10,26(-1010)
12,14(011-0)12,28(-1100)
18,26(1-010) 18,22(1-100)
20,22(101-0)20,22(1-100)
24,26(110,0)24,28(11-00)
14,30(-1110)22,30(1-110)26,30(11,10)28,30(111-0)
Step 3:
2,6,18,22(-0-10)
2,6,10,14(0--10)
2,10,18,26(--010)
2,18,6,22(-0-10)
2,18,10,26(--010) 4,12,6,14(0-1-0) 4,6,12,14(0-1-0)
4,6,20,22(-01-1) 4,20,6,22(-01-0) 4,20,12,28(--100)
8,10,12,14(01-0) 8,24,10,26(-10-0) 8,24,12,28(-1-00)
6,14,22,30(--110) 6,22,14,30(--110) 10,14,26,30(-1-10)
10,26,14,30(-1-10) 12,14,28,30(-11-0) 12,14,28,30(-11-0)
18,26,22,30(1—10) 18,22,26,30(1—10) 20,22,28,30(1-1-0)
20,22,22,30(1-1-0) 24,26,28,30(11-0) 24,28,26,30(11-0)
These are the prime implicant.
This is not the complete solution
ReplyDeletefile k under complete solution a .yaha adjust nhi horha tha screen pay.
ReplyDelete